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We studied the effects of spatial inhomogeneities on inwardly rotating spiral waves in a typical type of
oscillatory medium using the complex-Ginzburg-Landau equation. With a small degree of the inhomogeneity
in the medium, the slower inward spiral always suppressed a faster spiral; when the inhomogeneity exceeded
a critical value, however, a transition occurred to the coexistence of multiple inward spirals, insulated by
regions of highly disordered wave break. The occurrence of this transition is examined theoretically and shown
to be due to the Eckhaus instability.
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I. INTRODUCTION

Spiral waves have been extensively investigated in a va-
riety of spatial systems, including chemical and biological
systems �1�. Usually, spiral waves in excitable systems rotate
outwardly from the spiral core area, but in oscillatory sys-
tems, they can rotate outwardly or inwardly depending on
the sign of the phase velocity in the system. Spiral wave
rotates outwardly for positive phase velocity, and vice versa
for negative phase velocity �2–6�. Most studies of inward
spiral waves in oscillatory systems have focused on spatially
homogenous media �2–6�. However, real systems are com-
monly spatially inhomogeneous. The effects of inhomogene-
ity on outwardly rotating spiral waves in excitable and oscil-
latory systems have been extensively examined theoretically
�7–10� and experimentally �11�. In these studies, weak inho-
mogeneity leads to collision and annihilation of spirals with
different frequencies, such that the fastest spiral finally sup-
presses all slower spirals �7–11�. If the inhomogeneity be-
comes large enough, however, multiple spirals with different
frequencies can coexist �9,10�. It is not known whether in-
homogeneity has the same effects on inward spiral waves as
outward spiral waves. A recent interesting study �8� showed
that in a two-dimensional medium of a complex Ginzburg-
Landau equation, weak inhomogeneity caused the lower fre-
quency spiral to suppress the spiral with higher frequency in
the parameter regime ��� and ��0. The theoretically
analysis of CGLE �3–5� revealed that the spirals in this pa-
rameter regime rotated inwardly. However, to our knowl-
edge, there is no information about the effects of strong in-
homogeneity on the dynamics of inward spiral waves, and
whether the breakup of inward spirals can be produced by
inhomogeneity, and, if so, what mechanism is involved. In
this paper, we focused our investigations on this problem in a
typical oscillatory system—the two-dimensional complex
Ginzburg-Landau equation �CGLE�. In the next section, we
present the mathematical model and the numerical simula-
tions in this system. The theoretical analysis of the Eckhaus
instability in the presence of large inhomogeneities is pre-
sented in Sec. III. The paper ends with the conclusions and
discussions of the results.

II. MATHEMATICAL MODEL AND NUMERICAL
RESULTS

The CGLE provides a universal description of extended
systems in the vicinity of a supercritical Hopf bifurcation
�12�, as described by the following reaction-diffusion equa-
tion

�W/�t = W − �1 + i��W�W�2 + �1 + i���2W , �1�

in which � and � are control parameters. Analytical analysis
of the entire parameter �� ,�� space �3–5� showed that out-
wardly rotating spiral waves can form in a homogenous me-
dium in some parameter regions while the spiral waves rotate
inwardly in the other regions �see �5� for specific details�.
Throughout this paper, we fixed �=0.3 and varied �, keep-
ing ��0 so that the spiral waves rotated inwardly �5,6�. In
order to create an inhomogeneous medium, we modified the
parameter � as a function of space. Although in real systems
�11�, the inhomogeneity could be very complex, to study the
interaction of two different inward spiral waves systemati-
cally, we introduced the following simple inhomogeneity be-
tween the two halves of the medium.

� = ��L, x � Lx/2, 0 � y � Ly ,

�R, Lx/2 � x � Lx, 0 � y � Ly .
�2�

As �L=�R, the system describes a homogeneous medium.
Without losing generality, we set �L��R., so that the inward
spiral on the left side of the medium always rotated more
slowly than the right-sided inward spiral. Equation �1� was
simulated in a two-dimensional �2D� square sheet with the
system size Lx=Ly =100 for the homogenous condition, and a
2D rectangular sheet with Lx=200, Ly =100 for the inhomo-
geneous condition. No-flux boundary conditions and discreti-
zation of dx=dy=0.5 and dt=0.01 were used in an explicit
Euler-scheme. The spiral wave in the homogeneous medium
was initiated by using the limit cycle obtained from the local
dynamics of Eq. �1�, while the initiated spiral wave in inho-
mogeneous medium was constructed from the final stable
spiral waves in the corresponding homogenous case.

We found that the dynamical behavior of the inward spiral
wave in the homogenous case ��L=�R=�� qualitatively
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changed as the control parameter � decreased from zero. For
small absolute values of �, the inward spiral wave was com-
pletely stable after a transient process. The snapshots of
Re�W� for �=−0.60 and −1.00 are shown in Figs. 1�a� and
1�b�, respectively. These stable spiral waves propagated from
the boundary of the medium to the spiral core center, as
shown by the white arrows. As � was decreased to a critical
value ��−1.25, the inward spiral wave became unstable and
broke into a complex multiple spirals state as shown in Fig.
1�c� for �=−1.30. The transition is clearly shown by the
rotation period plots of the inward spiral in Fig. 1�d�, where
the spiral rotation periods were irregular for ��−1.25 but
regular for ��−1.25.

To investigate whether inhomogeneity could produce
qualitative changes in the dynamics of inward spiral waves,
we limited both �L and �R to the stable regime ���−1.25�.
We fixed �L=−0.60 to produce a slower inward spiral on the
left-side of the medium, and then altered �R with respect to
this value of �L to produce a faster inward spiral on the right
side of the medium. The interaction between the two inward
spiral waves initiated in the left and right halves of the me-
dium strongly depended on the degree of the inhomogeneity
��=�L−�R. For �R greater than a critical value �R

c of
�−0.92, the wave front of the left-sided slower inward spiral
gradually invaded the domain of the right-sided faster inward
spiral, until the faster spiral was swept away. Figure 2�a�
shows the interaction of the two inward spiral waves in the
medium for �R=−0.80. It is interesting to note that the inter-
action of inward spirals is essentially the inverse of that
which occurs between outward spirals. In the case of out-
ward spirals, the wave fronts from the faster spiral arrive
sooner at the interface zone and progressively invade the
domain of the slower spiral, until the faster outward spiral
sweeps the slower spiral off the border of the medium
�7–11�. With inward spirals, however, the wave fronts propa-
gate towards the center of the spiral �white arrows�. Thus,
wave fronts from the faster spiral recede more rapidly from
the interface zone than wave fronts from the slower spiral,

allowing the slower inward spiral wave to invade progres-
sively the faster inward spiral wave’s domain. The rotation
periods measured from the left �x=75.0,y=50.0� and right
sides �x=175.0,y=50.0� of the medium versus the beat num-
ber are shown in Fig. 2�b� by the solid dots and the dia-
monds, respectively. The rotation period in the left side of
the medium was always constant, while the rotation period in
the right side was initially constant, corresponding to the
rotation period of the faster inward spiral. As the wave fronts
from the slower left-sided spiral penetrated the core region of
the faster right-sided inward spiral, however, the rotation
speed decreased, and subsequently synchronized to the rota-
tion period of the slowest inward spiral wave.

When �R was beyond �R
c , however, the interaction be-

tween the two inward spiral waves changed qualitatively.
Wave propagation from the right side of the midline towards
the slower left-sided inward spiral core center became un-
stable and broke up into complex disordered multiple wave-
lets. This occurred because once the left-sided inward spiral
captured tissue on the right side, the frequency of these
waves was too fast for them to propagate leftward with 1:1
conduction across the middle towards the core of the left-
sided inward spiral. Meanwhile, while the distal wave fronts
of the faster right-sided inward spiral continued to propagate
stably towards their core. Thus, the wave breakup in the right

FIG. 1. �a�–�c� The snapshots of Re�W� in Eq. �1� in a homoge-
neous medium �Lx=Ly =100�, for �=0.3 and different �, after the
transient. The black to white gray scale represents the lowest value
�−1.0� to the highest value �1.0�. The white arrows indicate the
direction of wave propagation. �a� �=−0.60; �b� �=−1.00; �c�
�=−1.30; �d� The corresponding bifurcation diagram of the
steady state rotation period of inward spiral waves versus �. FIG. 2. �a� Evolution of interacting inward spiral waves in an

inhomogeneous medium �Lx=200,Ly =100� for �=0.3, �L=−0.60
�left half of medium� and �R=−0.80 �right half�. The white arrows
indicate the direction of wave propagation. The right-sided inward
spiral with faster frequency is gradually unwound by the left-sided
inward spiral with the slower frequency, and pushed off the bound-
ary. �b� The corresponding rotation periods of spirals in �a� versus
the beat number at location x=75.0, y=50.0 in the left-sided �L

region �solid dots� and location x=175.0, y=50.0 in the right-sided
�R region �diamonds�. �c� Same as �a�, except �L=−1.00. Note the
two inward spirals with different frequencies coexist, due to the
insulating effects of wave breaks in the middle region. �d� The
corresponding steady state rotation periods in �c� versus distance
along x at y=50.0.
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midline region protected the core of the faster right-sided
inward spiral from being unwound and swept away, allowing
two inward spirals with different frequencies to coexist. Fig-
ure 2�c� shows snapshots of the interactions between the two
spirals when �R=−1.00, and Fig. 2�d� shows the correspond-
ing rotation periods along the x space at y=50.0. The inward
spirals in the left and right sides of the medium rotated stably
with unique rotating periods, while wave breaks in the right
midline zone separating them were highly disordered.

Generally, the critical value �R
c depends on the value of

�L. Regardless of the �L value, when �R��R
c , the interaction

between the slower left-sided inward spiral �named SPL� and
the faster right-sided inward spiral �named SPR� can be sepa-
rated into two phases, an invading process and a sweeping
process. Figures 3�a� and 3�b� show the evolution of the tip
position y and x of the SPR for �L=−0.60 and �R=−0.80,
respectively. Initially, the right-sided faster spiral wave ro-
tated periodically around the core center x=150.0, y=50 for
nearly 300 times the unit duration, and then it began to drift
due to the push from the wave fronts of the left-sided spiral
wave. Finally, the right-sided spiral terminated at the lower-
right boundary of the medium after 550 times unit duration.
Applying the phase matching between the wave fronts be-
tween the left-sided spiral with frequency 	L and the right-
sided spiral with frequency 	R �8�, the invading velocity of
the one spiral unwinding the other is

V = �	R − 	L

kR + kL
R � , �3�

and the sweeping velocity at which the faster right-sided spi-
ral is swept away is

V = �	R − 	L

kL
R � , �4�

where kR is the wave number of the right-sided spiral, and kL
R

is the wave number of the wave from the left-sided spiral
invading into the right-sided region �10�. Both the invading
velocity of Eq. �3� and the sweeping velocity of Eq. �4� are
identical to the corresponding relationships for outwardly ro-
tating spirals, as previously shown in the theoretical models
�8,10� and experimental study �11�. Neglecting curvature ef-
fect, for the inhomogeneous condition of Eq. �2�, both wave
numbers kL

R and kR approximately satisfy the following dis-
persion relation �13�:

	L = �R + �� − �R��kL
R�2, 	R = �R + �� − �R�kR

2 . �5�

Note that the wave number kL
R is different from the wave

number kLof the left-side spiral wave in the left region of the
medium, which satisfies the dispersion relation 	L=�L+ ��
−�L�kL

2 �10�. In weakly inhomogeneous media �8�, however,
kL

R is approximately the same as kL. The theoretical predic-
tions of the invading velocity and the sweeping velocity ver-
sus �R are shown in Figs. 3�c� and 3�d� by the solid line,
respectively. The diamonds in Figs. 3�c� and 3�d� are the
velocities measured directly from the numerical simulations.
The theoretical values agree well with the numerical results.

III. THE ANALYSIS OF ECKHAUS INSTABILITY
AND MECHANISM OF COEXISTENCE OF MULTIPLE

INWARD SPIRALS IN THE PRESENCE
OF LARGE INHOMOGENEITIES

When �R is beyond the threshold �R
c , waves can propa-

gate continuously from the middle region to the spiral core
center on the right side, but the slower propagation of the
wave from the middle right-side zone towards the core of the
slower left-sided spiral wave is not sustained, it breaks up
into multiple wavelets due to the absolute Eckhaus instability
�6,13–16�. Specifically, since the left-propagated waves are
several wavelengths from the left spiral core center, they can
be approximately as planar waves, which have the following
form:

W = F exp�i�kr − 	t�� ,

	 = � + �� − ��k2, �6�

where F=	1−k2, and k2�1.
Applying the standard wave stability analysis to Eq. �6�

�13–15�, the criteria of the long-wavelength stability of the
planar waves of Eq. �6� is �see Ref. �13� for the detailed
calculations�

1 + �� − 2�1 + �2�k2/�1 − k2� = 0, �7�

which is called the Eckhaus instability. This leads to

FIG. 3. �a�–�b� The tip position of the faster right-sided inward
spiral along the y coordinate �a� and the x coordinate �b� versus time
for �=0.3, �L=−0.60, and �R=−0.80. Insets show enlargements of
the tip positions during the invading process by the slower inward
spiral wave �SPL�. �c� The theoretical invading velocity of the
slower inward spiral �SPL� from Eq. �3� versus �R for �L=−0.60
and �=0.3. �d� The theoretical sweeping velocity of the faster in-
ward spiral �SPR� from Eq. �4� versus �R. The theoretical values
agree well with the velocities measured directly from numerical
simulations �diamonds in �c� and �d��.
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kc = 	�1 + ���/�3 + �� + 2�2� . �8�

Thus, all planar or traveling waves with k�kc are stable and
vice versa for those with k�kc. The critical wave number kc
versus � for �=0.3 is shown in Fig. 4�a� by the dashed line.
The area under this dashed line is Eckhaus stable. As k�kc,
the planar waves become destabilized via the Eckhaus insta-
bility. However, the instability can be convective or absolute
�13�. Previous studies �6,13–16� showed the breakup of pla-
nar waves and spiral �inward or outward� waves in the oscil-
latory medium was caused by the absolute Eckhaus instabil-
ity. Applying a small localized longitudinal perturbation
exp�±iqr� with q 
k to Eq. �6�, we obtain the following cri-
teria for the absolute instability �see Ref. �13� for more de-
tails�


�q� = − q2 − F2 − 2i�kq

± 	�1 + �2�F4 − ��q2 − 2ikq + �F2�2,

Re�
�q�� = 0,

�
/�q�q0
= 0. �9�

where q0 is the largest saddle point in the complex q plane.
The threshold of k for the absolute instability determined by
Eq. �9� versus � when �=0.3 is shown in Fig. 4�a� as the
solid line. The area above the solid line is absolutely un-
stable, while the area between the solid and dashed lines is
convectively unstable. Using the dispersion relation from Eq.
�6�, the corresponding sustained wave frequency 	abs at the
onset of the absolute instability in the medium can be ob-
tained and is shown in Fig. 4�b� as the dashed line. The solid

line in Fig. 4�b� represents the rotating frequency of the in-
ward spiral wave measured in the homogenous medium. The
solid line meets the dashed line at ��−1.27, which is the
threshold for the onset of the inward spiral wave breakup in
the homogeneous medium. The threshold is close to the
value −1.25 obtained directly from the numerical simulation,
as shown in Fig. 1. For the inhomogeneous condition of Eq.
�2�, wave breaks can be qualitatively described as follows.
First, since �L was fixed in the left-sided region, the corre-
sponding rotating frequency 	L of the inward spiral wave in
this region was also constant. Second, as �R varied from the
initial value �L, the frequency of the waves in the right side
propagating towards the left-sided spiral core center always
had the same frequency 	L of the slower left-sided spiral
wave. Therefore, for a fixed �L in the left-sided region, the
critical value of �R for the onset of the wave breakup in the
right-side region is determined by

	abs��R� = 	L. �10�

The predicted values by Eq. �10� agreed well with these
critical values of �R obtained from the numerical simulations
as shown in Fig. 4�b� by the diamonds for four sets of
�L=−0.40, −0.60, −0.80, −1.0 �open circles�, respectively.

IV. CONCLUSIONS

We have investigated the effects of inhomogeneity on the
interaction and the breakup of inward spiral waves in the
CGLE system. The occurrence of wave breakup produced by
inhomogeneity was theoretically analyzed by examining the
absolute Eckhaus instability. The effect of inhomogeneity
was strongly dependent on the degree of the inhomogeneity
in the medium. First, for small degrees of inhomogeneity,
and below a critical value, the interaction between two stable
inward spirals resulted in the slower spiral always suppress-
ing the faster one. This is the opposite of the interaction
between two stable outward spirals, where the faster spiral
wave always suppress the slower one �7–11�. This is because
the wave fronts of the faster inward spirals recede towards
the core center, while the outward spiral waves propagate out
from the core center. However, the invading velocity of the
dominated inwardly rotating spiral and the sweeping velocity
of the unwound inwardly rotating spiral obeyed the same
principles as outwardly rotating spirals found in the theoret-
ical models �8,10� and experimental study �11�. Second,
when the degree of inhomogeneity is beyond the critical
threshold, wave propagation in the faster spiral region breaks
up distant from the core due to the onset of the absolute
Eckhaus instability. In this setting, the slower and faster in-
ward spirals become insulated from one another by the re-
gion of wave breaks between them, and can coexist. Finally,
although the inhomogeneity of Eq. �2� in this study is simple
with just two different regions, our findings, especially, the
coexistence of multiple inward spirals with different rotating
frequencies, are also applicable to more complex inhomoge-
neous oscillatory media, and can be tested experimentally in
real oscillatory systems, such as the BZ-AOT systems �2,11�
in similar settings.

FIG. 4. �a� The threshold of wave numbers for the Eckhaus
convective instability �dashed line� and absolute instability �solid
line� vs � for �=0.3. �b� The wave frequency at the onset of the
Eckhaus absolute instability �dashed line�, and the rotating fre-
quency of the inward spiral wave �solid line� versus � for �=0.3.
The diamonds represent the corresponding �R threshold for the on-
set of wave breakup in the medium obtained by numerical simula-
tion at different fixed �L �open circles� in the left side of the
medium.
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